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The Design of an Optoelectronic Arithmetic
Processor Based on Permutation Networks

Ming-Bo Lin, Member, IEEE, and A. Yavuz Oruç, Senior Member, IEEE

Abstract —This paper introduces a new concept by which it is possible to design and implement arithmetic processors using

permutation networks. To demonstrate this concept, several optoelectronic arithmetic units combining optical directional coupler

switches and cyclic permutation networks are designed. The designs show that addition, subtraction, and multiplication can all be

performed in O(log n) time in residue code domain and using O(n2) directional coupler switches and gates, where n = log M, and M
is the integer range of interest. These arithmetic units also have the capability of concurrent error detection and fault-tolerance, and

they can be used to construct constant time inner product processors.

Index Terms —Directional coupler switch, modulo arithmetic, optical computing, permutation network, residue codes.

——————————   ✦   ——————————

1 INTRODUCTION

major disadvantage of conventional arithmetic algo-
rithms is that their realizations require different

hardware structures. For example, addition and multipli-
cation cannot use the same hardware unless a repeated-
addition algorithm is used to perform multiplication op-
erations. But this means a reduction in speed which, in gen-
eral, is not tolerable. Another disadvantage of conventional
arithmetic algorithms is that they cannot easily be parallel-
ized due to carry propagation.

One way to alleviate these disadvantages is to transform
arithmetic operations into a residue code domain and then
perform the requisite computations in this domain. In the
residue code domain, each binary number is represented as
a set of residue digits and the arithmetic operations are per-
formed on residue digits in parallel. This provides carry-
free realizations of binary addition, multiplication, and
other operations, but these realizations typically do not
have any overlap, and require different hardware for each
operation as in conventional algorithms [16], [27].

Another way to overcome the disadvantages of conven-
tional arithmetic algorithms is by using optical computing
[3], [5]. The motivation behind optical computing is the ob-
servation that photons in optical fibers, optical integrated
circuits, and free space travel faster than electrons do in elec-
tronic circuits since they do not have to charge a capacitor.
Furthermore, photons are uncharged and do not interfere
with one another as readily as electrons. This implies that
optical signals can be easily handled in parallel [20].

Many implementations of optical logic operations have
been suggested in the literature. Among these, spatially

invariant and spatially variant techniques are dominant.
Spatially invariant techniques include symbolic substitution
logic (SSL) which is implemented by additive methods [5],
[6] or convolution techniques [7], [12], shadow-casting logic
[28], programmable logic [21], [22], and the combinatorial
logic-based system [10].

The basic idea behind SSL is to first detect the presence
of one or more patterns in an input plane and then substi-
tute an appropriate pattern for each detected pattern. The
major disadvantage of this approach is that, for n inputs, it
requires W(2n) hardware [19].

In the programmable logic technique, a set of n-input
variables are mapped to an input array along with their
complements. A series of n + 1 interconnection stages con-
sisting of one crossover network and one mask per stage is
then used, along with n + 1 arrays of AND gates, to gener-
ate all the minterms of the desired function. Finally, the
appropriate minterms are combined through a similar se-
ries of n + 1 interconnection stages, along with n + 1 arrays
of OR gates, to generate the function. Thus, the total num-
ber of gates required by this technique is O(n2n).

The basic idea of the spatially variant technique pro-
posed in [19] is to build a set of the spatially variant ele-
mentary logic functions. These elementary functions are
used to construct larger functions as in conventional logic
designs. As an example, an n-bit carry look-ahead adder
can be implemented by this approach with O(n3) gates and
O(log n) delay.

All these approaches, however, are based on full spatial
optical principles, and they could not be easily realized by
integrated optics [20]. Recently, a number of optical com-
puting schemes that mix electronic and optical techniques
have also been proposed [1], [2]. These mainly use direc-
tional coupler switches as building blocks. In essence, a
directional coupler switch is a five-terminal gate with two
inputs, two outputs, and one control input. The two out-
puts are logical functions of two throughgoing input sig-
nals and the control input signal.
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Benner et al. [1], [2] have proposed a scheme that shows
how to design oscillators and divide-by-N counters using
optical directional coupler switches. Although such gates
do not constitute truly all optical devices, the logical input-
output signals are optical and the use of electronic signals
in the control input provides some flexibility that is not yet
available in well-developed optical switches. This also pro-
vides an opportunity for optical computing based on inte-
grated optics [20].

Recently, Lea [14] designed photonic interconnection
networks using directional coupler switches. In these net-
works, electronic switches are replaced by directional cou-
pler switches, and single-mode waveguides are used to
establish the connections between directional coupler
switches. Historically, interconnection networks were in-
troduced to enhance the communication bandwidth in tele-
phone systems and parallel processors. In this paper, we
explore the possibility of using interconnection networks to
perform arithmetic operations. The rationale behind this is
that any algebraic computation can be viewed as a se-
quence of permutation operations. The key problem is how
to pick up an appropriate mapping function that could map
all of the desirable input patterns into corresponding per-
mutations. Thus, the underlying network must have
enough permutations so that it can cover all of the input
patterns.

We refine these ideas, and combine optical directional
coupler switching, residue arithmetic, and permutation
networks to obtain a novel optoelectronic computational
model, and to develop various optoelectronic arithmetic
processor modules. Optical devices reduce the signal
propagation delay and therefore increase the computation
speed. Permutation networks provide a way of computa-
tion which replaces the propagation delays in conventional
logic circuits by the transmission delay of light through
waveguides, and the residue arithmetic keeps the cost of
permutation networks to an acceptable level.

The remainder of the paper is organized as follows: Sec-
tion 2 summarizes the mathematical preliminaries used in
this paper. Section 3 shows how to design addition, sub-
traction, and multiplication modules, and Section 4 shows
how to design an input encoder and output decoder using
directional coupler switches and cyclic permutation net-
works. Section 5 analyzes the performance of various
arithmetic modules designed in the previous sections. The
paper is concluded in Section 6.

2 PRELIMINARIES

We begin with a review of some basic mathematical facts
[8], [23].

2.1 Finite Groups
Let a, b, and n be integers with n being positive. Then the
expression

a ∫ b(mod n)

called a congruence, holds if and only if a − b = kn for some
integer k. n is called the modulus and b is called a residue of
a and vice versa. Let a be an integer and [a]n denote the set

of integers q satisfying

q ∫ a(mod n).

The set [a]n is called the congruence class modulo n of a.
Writing b Œ [a]n is the same as writing b ∫ a(mod n). The set
of all such congruence classes is denoted as:

Zn = {[a]n : 0 £ a £ n − 1}        (1)

or more simply as:

Zn = {0, 1, º, n − 1}.     (2)

For a given modulus n, define the operations +n and ¥n as

[a]n +n [b]n = [c]n if and only if a + b ∫ c(mod n)      (3)

[a]n ¥n [b]n = [c]n if and only if ab ∫ c(mod n)        (4)

Then (Zn, +n) forms an additive group of order n. Similarly,

the set Z a Z a nn n n
* = Œ ={[ ] } : ( , ) }gcd 1 , that is, the set of all

elements relatively prime to n forms a multiplicative group
of f(n) elements, where f(n) is called the Euler f function. If
p is prime, then Z pp

* = -{ , , , }1 2 1K  and f(p) = p − 1. If n is

composite, then f(n) < n − 1. In this paper, we only consider
the case that p is prime.

A group G is called cyclic if there is an element g in G

such that G = {gn|n Œ Z}. Element g is called a generator of

G. The multiplicative group Zp
*  can be shown to be a cyclic

group and therefore has a single generator, also called a
primitive element. The least positive primitive elements for
the first 35 primes are listed in Table 1.

An isomorphism f from a group (G, $) to a group ( , )G e

is a one-to-one and onto (i.e., bijection) mapping from G to
G  that preserves the group operation. That is,

f(a $ b) = f(a) e f(b)    for all a, b Œ G (5)

If there is an isomorphism from G to G , we say that G and
G  are isomorphic and denote it by G G. .

THEOREM 1. Every finite cyclic group with order n is isomorphic
to (Zn, +n).

THEOREM 2. ( , )Zp p
* ¥  is isomorphic to (Zp−1, +p−1), where p is

prime.

Now we define permutations and permutation groups.
A permutation of a set A is a function from A to A, that is
both one-to-one and onto. A permutation group of a set A is
a set of permutations of A that forms a group under func-
tion composition. The degree of a permutation group on a
set A is the cardinality of A.

A convenient way to denote a permutation is by using
an array notation. Let A = {0, 1, º, n − 1} be a set of n ele-
ments and a be a permutation on set A. Then we write

a a a a a= -
-

F
H

I
K

0 1 2 1
0 1 2 1

K
K

n
na f a f a f a f .       (6)

The set of all permutations of n elements is called the sym-
metric group of degree n and is denoted by Sn.

Composition of permutations expressed in array nota-
tion is carried out from left to right by going from top to
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bottom, then top to bottom. Let

a b= F
H

I
K = F

H
I
K

0 1 2 3 4
3 0 2 4 1

0 1 2 3 4
1 2 3 4 0  and      (7)

then

ab = F
H

I
K
F
H

I
K

0 1 2 3 4
3 0 2 4 1

0 1 2 3 4
1 2 3 4 0

= F
H

I
K =0 1 2 3 4

4 1 3 0 2 0423 1a fa f .  (8)

The cycle notation (0 4 2 3)(1) expresses the same permuta-
tion in a more compact way.

THEOREM 3 (cyclic permutation group). A set of permutations
generated by permutation function

a(i) = i + 1 mod n, for 0 £ i £ n − 1 (9)

forms a cyclic group of order n under function composition.

Finite groups are related to permutation groups by the
following well-known Cayley Theorem.

THEOREM 4 (Cayley Theorem [8]). Every finite group is iso-
morphic to a permutation group.

Cayley Theorem gives a constructive rule for an isomor-
phism, which is called the regular representation of the
group. If (G, $) is a group, Cayley Theorem states that the
(right) regular representation of G is given by

R={Ta|a Œ G}

where the bijection Ta is defined as

Ta : b Æ a $ b     "b Œ G.

As an example, the regular representation of (Zn, +n) is
given by ( ,G o), where

G T i nn i= £ <0n s
and Ti is given by

Ti : j Æ i +n j     "j; 0 £ j < n.

The next corollary immediately follows.

COROLLARY 1. Every cyclic group is isomorphic to a cyclic per-
mutation group.

2.2 Realizations of Permutation Groups
In the previous section, we have established the relation-
ship between a finite group and a permutation group
through the well-known Cayley Theorem. In this section,
we will show how to realize a permutation group on a
permutation network.

A permutation network is an interconnection network
with an input port and an output port, where each port has
s lines, labeled from top to bottom as 0, 1, º, s − 1. An ex-
ample is shown in Fig. 1. To represent the permutation map

TABLE 1
PRODUCT AND SUM OF FIRST 35 CONSECUTIVE PRIMES

Èlog mi˘ Â mi Â Èlog mi˘ Èlog ’ mi˘ least positive

order mi (bits) (bits) (bits) primitive root
1 2 1 2 1 1 1
2 3 2 5 3 2 2
3 5 3 10 6 4 2
4 7 3 17 9 7 3
5 11 4 28 13 11 2
6 13 4 41 17 14 2
7 17 5 58 22 18 3
8 19 5 77 27 23 2
9 23 5 100 32 27 5
10 29 5 129 37 32 2
11 31 5 160 42 37 3
12 37 6 197 48 42 2
13 41 6 238 54 48 6
14 43 6 281 60 53 3
15 47 6 328 66 59 5
16 53 6 381 72 64 2
17 59 6 440 78 70 2
18 61 6 501 84 76 2
19 67 7 568 91 82 2
20 71 7 639 98 88 7
21 73 7 712 105 95 5
22 79 7 791 112 101 3
23 83 7 874 119 107 2
24 89 7 963 126 114 3
25 97 7 1,060 133 120 5
26 101 7 1,161 140 127 2
27 103 7 1,264 147 134 5
28 107 7 1,371 154 140 2
29 109 7 1,480 161 147 6
30 113 7 1,593 168 154 3
31 127 7 1,720 175 161 3
32 131 8 1,851 183 168 2
33 137 8 1,988 191 175 3
34 139 8 2,127 199 182 2
35 149 8 2,276 207 189 2
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0 1 2 3 4
3 4 0 1 2

F
H

I
K ,

input 0 is connected to output 3, input 1 to output 4, and so
on. Fig. 1 shows the composition of two permutations. The
time taken to add two numbers is basically the time taken
to compose two permutations, which depends on the kind
of permutation networks used. Although we show a direct
connection between the inputs and outputs, this is in gen-
eral not necessary. All that is required is that there be a path
from each input to a distinct output as specified by the
permutation map.

Fig. 1. Permutations for 3 +5 4 = 2.

One way to realize a permutation network such as the
one shown in Fig. 1 is to use a rearrangeable interconnec-
tion network [4], [29]. However, for n inputs, these net-
works use O(n log n) switches, and they are not an attrac-
tive choice to realize cyclic groups of order n as the latter
only requires n permutations. For cyclic groups such as
those we will consider in this paper, a cyclic permutation
network, performing n permutations, is sufficient as im-
plied by Cayley theorem. However, even with n permuta-
tions, the realization can become prohibitively difficult as n
gets large if we use the Cayley isomorphism. The reason is
that the Cayley isomorphism of a cyclic group will exact n
permutations, where n is the order of the group. This prob-
lem can be overcome by decomposing the group into a set
of subgroups whose orders are relatively prime. We then
apply the Cayley regular representation to each subgroup.

DEFINITION 1. Let ( , ), ( , ), , ( , )G G GG G r Gr1 21 2
o o oK  be a collec-

tion of groups. The direct product of G1, G2, º, Gr, written

as G1 ¥ G2 º ¥ Gr is the set of all r-tuples for which the ith

component is an element of Gi and the operation is compo-
nentwise, that is,

G1 ¥ G2 ¥ º ¥ Gr = {(a1, a2, º, ar)|ai Œ Gi}

where (a1, a2, º, ar)(b1, b2, º, br) is defined to be (a1$G1b1,
a2$G2b2, º, ar$Grbr).

In general, G1, G2, º, Gr are groups with the same operation
but different orders.

An example is shown in Fig. 2. (Z30, +30) is decomposed
into three smaller groups, (Z2, +2), (Z3, +3), and (Z5, +5). These
groups are then mapped into permutation groups by using
Cayley Theorem, respectively. In terms of permutations,
three disjoint cycles with order 2, 3, and 5 are used to repre-
sent the groups (Z2, +2), (Z3, +3), and (Z5, +5), respectively.

Fig. 2. Disjoint cycle permutations representing 5+30 28 = 3.

Now, we extend the above direct product group into a
direct product of commutative rings as follows.

DEFINITION 2. Suppose R1, R2, º, Rr are commutative rings
with an identity element. Then the direct product R1 ¥ R2 ¥
º ¥ Rr is the set of r-tuples (x1, x2, º, xr) where xi Œ Ri for
i = 1, 2, º, r, with addition and multiplication defined
componentwise, that is

x x x y y yr m m m rr1 2 1 21 2
, , , , ,, , ,K KKc h c h+

= + + +x y x y x ym m r m rr1 1 2 21 2
, , ,Ke j      (10)

x x x y y yr m m m rr1 2 1 21 2
, , , , ,, , ,K KKc h c h¥

= ¥ ¥ ¥x y x y x ym m r m rr1 1 2 21 2
, , ,Ke j      (11)

The zero is (0, 0, º, 0) and the identity element is (1, 1,
º, 1). It is readily seen that R1 ¥ R2 ¥ º ¥ Rr is also a
commutative ring with identity element.

2.3 Input Encoding and Output Decoding
The input encoding procedure is based on the following
theorem [25].

THEOREM 5. Let M = m1m2 º mr where gcd(mi, mj) = 1 if i π j.

Then there is an isomorphism between ZM and

Z Z Zm m mr1 2
¥ ¥ ¥K .

The isomorphism is defined as

X ∫ xi(mod mi)    for    i = 1, 2, º, r.             (12)

The r-tuple (x1, x2, º, xr) is called the residue code of X.
The relationship between X and its residue codes is

bridged by the Chinese Remainder Theorem [25].
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THEOREM 6 (Chinese Remainder Theorem). Suppose the posi-
tive integers m1, m2, º, mr are relatively prime in pairs,
that is, gcd(mi, mj) = 1 for all i, j where i π j. Then the set of
congruences

X ∫ xi(mod mi)

for i = 1, 2, º, r has a unique common solution modulo M,
where M = m1m2 º mr. The solution is given by

X x m m Mi i i
i

r

= ¢ ¢¢
=
Â mod

1

,       (13)

where ¢ =mi
M
mi

, and ¢¢mi  are integers satisfying

¢ ¢¢ ∫m m mi i i1mod .

In Section 4, we shall show how to realize the isomor-
phism and its inverse isomorphism between ZM and
Z Z Zm m mr1 2

¥ ¥ ¥K  in terms of permutation networks.

3 ARITHMETIC UNIT DESIGN

This section introduces various optoelectronic arithmetic
circuits. All of these optoelectronic arithmetic circuits con-
sist of three basic components: cyclic permutation net-
works, directional coupler switches, and Y-junctions.

3.1 Basic Components
3.1.1 Cyclic Permutation Networks
In this section, we will show how to realize a cyclical per-
mutation network which will be used to realize cyclic
groups. A cyclical (right shift) permutation network with
degree m, denoted by CRPN(m) has m inputs and m outputs
and is a cascade of Èlog m˘ switches, numbered form left to
right Èlog m˘ − 1, º, 2, 1, 0 in that order, and each having m
inputs and m outputs such that the switch in stage k, for all
k = 0, 1, º, Èlog m˘ − 1 has two switching states:

state 0: input i is passed directly to output i, for all i = 0, 1,
º, m − 1;
state 1: input i is connected to output j such that

j = i +m 2k         (14)

for all i = 0, 1, º, m − 1.
It is easy to verify that a right circular shift of the se-

quence of elements 012 º m − 1 r times, 0 £ r £ m − 1, can be

realized on this network by expressing r in binary as a02
0 +

a12
1 + º + aÈlog m˘−12

Èlog m˘−1 and setting all those switches for

which ai = 0 to state 0 and those for which ai = 1 to state 1.

3.1.2 Directional Coupler Switch
The directional coupler switch can be used like a 2-by-2
switch with two states: the straight state and cross state
[13], [24]. In the straight state, the signal of the upper input
goes to the upper output while the signal of lower input
goes to the lower output. In the cross state, the signal of the
upper input goes to the lower output while the signal of
lower input goes to the upper output, as shown in Fig. 3a.
The logic model for the directional coupler switch is shown
in Fig. 3b. By properly controlling their states, directional

coupler switches can be used to implement permutations
on permutation networks.

Fig. 3. Directional coupler switch and its logic model.

Two factors affect the fabric size of integration when
using directional coupler switches. These are the attenua-
tion of signals passing through the device and the cross talk
inside the device [11]. However, these two factors are
minimal when the underlying network topology has a loga-
rithmic depth and if we can ensure that no two inputs on a
directional coupler switch are active at the same time [11].

Here, only a subset of functions of a directional coupler
switch is required to design arithmetic circuits. More pre-
cisely, we will set b = 0 for all times while using the direc-
tional coupler switches. Since all cyclic permutation net-
works used to design arithmetic circuits have a logarithmic
depth and one of the inputs of each directional coupler
switch is set to 0, that is, no two inputs of the same direc-
tional coupler switch in the cyclic permutation networks
are active simultaneously, the signal attenuation and cross
talk are minimal.

The other limits on the fabric size of integration are the
large length of directional coupler switches in relation to
their width and the large minimum bending radius of the
diffused waveguides. All these constraints add up to a
maximum integration array size of 32 by 32 [11]. However,
from Table 1 we see that the product range of the first 10
primes is already about 232 and the largest prime is only 29.
Therefore, the arithmetic circuits proposed in this paper are
feasible within the domain of current integrated optics.

Another component needed to realize a cyclic permuta-
tion network in optics is a Y-junction, which is a special
kind of optical coupler, and sometimes called a combiner
[1]. This device joins two signals into one that can then
propagate to the next stage. Since the technology of inte-
grated optics is still in its developing stages, the signal
losses of directional coupler switches and Y-junctions are
high but they are likely to be reduced to some extent in the
near future. For practical purposes, if it is necessary, optical
regenerators may be used to recover the signals [1].

3.1.3 Input Encoder and Output Decoder
Occasionally the operands must be converted to residue
representation and the results in residue representation
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must be converted to binary. We use encoder and decoder
circuits to convert between binary and 1-out-of-m position
codes. More specifically, the 1-out-of-m encoder in the input
stage codes its Èlog m˘-bit binary input into a 1-out-of-m
position code, and the 1-out-of-m decoder in the output
stage decodes its 1-out-of-m position code into its Èlog m˘-
bit binary equivalent. Positions are numbered 0, 1, to m − 1,
and position i is identified with binary input i.

Since the encoder and decoder are electronic circuits, it is
necessary to do the conversions between optical and elec-
tronic signals in these circuits and vice versa. We will see
that optical-to-electronic and electronic-to-optical circuits
are only needed in the encoder and decoder stages.

3.2 Modulo m Addition
As implied by Cayley theorem, the set Zm = {0, 1, º, m − 1}
under addition modulo m, is isomorphic to a cyclic permu-
tation group of order m. Thus, it is sufficient to consider the
implementation of a cyclic permutation group on the
CRPN(m). Here, the implementation of a cyclic group refers
to composing any two elements of the group to obtain an-
other element in the group. This is to be done by entering
the elements into the network, and the network will pro-
duce as output the composition of the elements. We first
note that a cyclic group (G, •) of order m is generated by a
generator g and its elements are g0 (= gm), g1, º, gm−1, where
g0 = e is the identity permutation, and gi, for all i, 0 £ i £ m − 1,
is the permutation obtained by cyclically shifting right the
sequence 0 1 2 º m − 1 i times. It is easy to verify that

g g gx y x ym∑ = + (15)

for all x, y = 0, 1, º, m − 1. That is, the composition of two
cycles gx and gy results in a cycle obtained by cyclically
right shifting the sequence 0 1 2 º m − 1 x + y times. Thus,
an implementation of a cyclic group of order m can be ob-
tained by cascading two CRPN(m)s. The composition of
two elements gx and gy in the group can then be realized by
cyclically shifting right the inputs of the first network x
times and then cyclically shifting right the inputs of the
second network y times, as shown in Fig. 1. The resulting
permutation is then read from the outputs of the second
network. While providing an implementation of a cyclic
group, this approach requires two CRPN(m)s. An imple-
mentation requiring only one CRPN(m) can be obtained by
dropping the second network and connecting the outputs
of the first network back onto its inputs. The composition of
gx • gy is then computed by first cyclically right shifting the
inputs x times and then copying the outputs back onto the
inputs, and finally cyclically right shifting the inputs y
times. This design reduces the hardware cost, but like the
first design it requires a total of x + y cyclical right shifts.
The number of shifts can be reduced to y by noting that one
of the elements, say gx, can be entered into the network di-
rectly by coding it in terms of binary m-tuples in which exactly
one entry is 1. The position of that entry is specified by x.

The central component of this implementation is the
CRPN(m), which is constructed as described above. Given
two elements gx and gy, the network receives exponent x to
activate its xth input. The network then cyclically shifts the
“1” down y positions and outputs it at output x +m y. For

(Zn, +n), the operation is addition so we use multiples in-
stead of powers. We set its generator to “1” so that the op-
eration gx • gy can be performed simply by using x +m y.

Fig. 4 shows an example of modulo 5 addition. To illus-
trate how the adder operates, suppose that the operation
1 +5 3 is required. Then input x (in this case it is 1), activates
the line 1. The other input y (in this case it is 3), is applied to
the control inputs of the directional coupler switches
through inverters and determines the switching state of the
network. The final result, which is shown in darker line is
1 +5 3 = 4. We note that all inputs of stage i is shifted right
(down) by 2i mod 5, 0 £ i £ 2.

Fig. 4. Modulo 5 addition on CRPN(5) (x +5 y = 1 +5 3 = 4).

3.3 Modulo m Subtraction
As in complement arithmetic, subtraction x − y is carried
out on the CRPN(m) by adding the additive inverse of the
subtrahend (y) to the minuend (x). In terms of the elements
of a cyclic group, if gz is the inverse of gy then gy • gz = g0 =
gm, that is, y + z = m or z = m − y. Thus, the inverse of y can
be computed by right shifting the inputs of the CRPN(m) m − y
times. Using this fact, subtraction x − y can be performed by
first inputting x into the CRPN(m) and then shifting it right
m − y times. While this facilitates subtraction on the
CRPN(m), it requires an explicit computation of m − y out-
side the CRPN(m). This problem can be avoided in at least
two ways. As a first solution, we note that right circular
shifting m − y times is the same as left circular shifting y
times. Therefore, we can perform x − y simply by inputting
x into a cyclical left permutation network with degree m,
denoted by CLPN(m), and then shifting left (up) the inputs
of the network y times as depicted in Fig. 5. Like the
CRPN(m), each stage in the CLPN(m) has two states: State 0
is the same as state 0 in the CRPN(m) and in its state 1, all
inputs in the kth stage are shifted left circularly by 2k. Fig. 5
is an example of computing x −5 y = 1 −5 3 = 3. The generator
is assumed to be “1.”

The CLPN(m) eliminates the need for an explicit com-
putation of m − y but if we want to combine addition and
subtraction on a single network then we must have three
switching states for each stage. Instead, we can perform
both addition and subtraction on the CRPN(m) if we enter y
to the CRPN(m) from the left side of the CRPN(m) and use x
to determine the switching state of the network. We need
one other minor modification to the network. Because we
want to compute x + (m − y), we must enter y to input m − y
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rather than input y of the CRPN(m). This is accomplished by
a permutation network that maps y, 0 £ y £ m − 1, to input
m − y of the CRPN(m). Essentially, this operation amounts to
determining the inverse gm−y of the permutation gy, where g is
the generator of the cyclic group. We will call gm−y the shift-m
complement of gy. Fig. 6 depicts the organization of this net-
work. The shaded box, called the shift-m complementer com-
putes the shift-m complement of gy. We must note that for a
fixed m, the shift-m complementer has a fixed pattern of con-
nections that do not change with the value of y. We must also
note that addition and subtraction can be combined together
by adding the 0 state to the shift-m complementer, i.e., by
connecting its ith input to its ith output, 0 £ i £ m − 1.

3.4 Modulo m Multiplication
The set {1, 2, º, m − 1} under multiplication modulo m forms
a cyclic group of order m − 1, when m is a prime. A generator
of this group is an element h such that hm-1 ∫ 1 (mod m). In
general, there is no straightforward method to determine
the generators of a multiplicative group. However, for
small primes, one can always find the generators by trial
and error.

Let Zm
*  denote the multiplicative group mod m with a

generator h. To realize Zm
*  on the CRPN(m),1 we set up an

1. In reality, the network in this case has m − 1 inputs, but for notational
convenience, we will refer to it as an CRPN(m).

Fig. 5. Modulo 5 subtraction on CLPN(5) (x −5 y = 1 −5 3 = 3).

Fig. 6. Modulo 5 subtraction on CRPN(5) (x −5 y = 3 −5 4 = 4).

Fig. 7. Modulo 5 multiplication on CRPN(5) (x ¥5 y = 4 ¥5  3 = 2).
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isomorphism f between Zm
*  and the cyclic permutation

group Gm−1 defined by f(hi) = gi; i = 0, 1, º, m − 2. Given
this, what remains to be done is to express the elements of
Zm

*  as a power of the generator h. For a given multiplicative
group and a generator, these powers are fixed and can be
predetermined. Once this is done, the realization of Zm

*  on
the CRPN(m) proceeds much the same way as in the reali-
zation of addition mod (m − 1) as shown in Fig. 7. There are
a few minor differences: First, if one or both operands x and
y are zero, then the outputs of the CRPN(m) are bypassed
by using a zero detection circuit. The extra stage of direc-
tional coupler switches as shown in the figure are added to
handle this case. Second, the shaded boxes, called the mip
(multiplication input permutation) and mop (multiplication
output permutation) boxes are inserted before and after the
CRPN(m) to convert the x operand into a power of the gen-
erator used, and reconvert the power of the generator that
is obtained at the outputs of the CRPN(m) into the product
of x and y. Another mip box along with a 1-out-of-(m − 1)
decoder and 1-out-of-m encoder are used to convert y into a
power of the generator. In all these cases, the connections of
the mip and mop boxes are fixed for a given m and a gen-
erator. Hence, they do not incur any additional cost. Fig. 7
illustrates the multiplication process on the CRPN(m) for
x = 4, y = 3 and when the generator is 2.

4 INPUT ENCODING AND OUTPUT DECODING

Now that we have completed our discussion of how to im-
plement various algebraic operations on a CRPN(m), we will
show how to convert between residue codes and binary
number systems on such a network. The problem of con-
verting a binary number into its residue codes is called the
input translation or input encoding problem. Likewise, the
problem of converting a residue codes into its binary form is
called the output translation or output decoding problem [15].

4.1 Input Encoding
Let X = (bk−1 º b0b1) be a k-bit binary number, where k =
Èlog m1m2 º mr˘, that is, the range of X is M = m1 ¥ m2 ¥ º ¥ mr,
and let (x1, x2, º, xr) be the residue codes of X. The input en-
coding is implemented by r CRPN(mi)s, where the ith net-
work has mi inputs and all networks have Èlog m1m2 º mr˘
stages. The entries xi, 1 £ i £ r, are determined by setting the
jth stage of all the networks according to the jth bit bj in the
binary representation of X. If bj = 0, then the jth stages of all
networks are set to state 0, and if bj = 1, then they are set to
state 1. The value of xi is then obtained at the output of the
last stage of the ith network. If the residue codes are desired
in a binary form, a 1-out-of-mi decoder can be connected to
the output of the last stage of the ith network. The decoder
identifies that output of the network which is connected to
its 0 input after its stages are set. Fig. 8 illustrates this
method for m1 = 3, m2 = 5, and X = (01011)2 = 1110 = (2, 1).

The rationale behind this method is Horner’s evaluation
of x mod mi, i.e.,

x X m b mi i j
j

i
j

k

= =
=

-

Âmod mod2
0

1

c h                        (16)

= + + +FH IK-
-

-
-K Kb m b m b mk

k
i k

k
i i1

1
2

2
0

02 2 2mod mod mode je j ,

for all i i r, 1 £ £ . (17)

The first stage in the ith network computes bk-12
k-1 mod mi, the

second stage computes ((bk-12
k-1 mod mi) + bk-22

k-2) mod mi,
and inductively the last stage computes the entire expression.

4.2 Output Decoding
The output decoding circuit is based on the idea of base ex-
tension and scaling by 2t [26]. First, we carry out the residue
decoder using an extension of Garner’s algorithm [9]. Let
(x1, x2, º, xr) be the residue codes of X with moduli m1, m2,
º, mr, respectively. Garner’s algorithm receives x1, x2, º, xr
as input and produces a single output. The algorithm given
below is a modified version of Garner’s algorithm and com-
putes t bits of the binary output at a time, where t is some
positive number between 1 and log M, and M = m1m2 º mr.

Fig. 8. Converting an unsigned number (1110) into its residue codes (2, 1) on CRPN(15).
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Algorithm (Conversion residue codes into its binary form.)

Begin

Step 1: Determine constants ci,j satisfying mici,j = 1 mod mj, for

1 £ i < j £ r, and constants c t i2 ,
  satisfying 2 1

2
t

i ic mt ,
mod=

for 1 £ i £ r, where t is a positive integer ≥
£ £

max{ log }
1 i r im .

This step is carried out off line and is not part of the residue
decoder.
Step 2: Let yi = xi, for all i, 1 £ i £ r.
Step 3: Base extension to mod 2t.

3.1 Compute
r y m

r y r c m

r y r c r c m

1 1 1

2 2 1 12 2

3 3 1 13 2 23 3

=

= -

= - -

mod

mod

mod

c h
c hd i

M

r y r c r c r c mr r r r r r r r= - - - - - -K K1 1 2 2 1 1,c hd ie j mod         (18)

3.2 Compute

S r

S S r m

t

t
1 1

2 1 2 1

2

2

=

= +

mod

mod

M

S S r m m mr r r r
t= +- -1 1 2 1 2K mod     (19)

Step 4: Scaling by 2t.
Compute y x z ci i i it= -( )

,2
 and set xi = yi, for all i, 1 £ i £ r,

where zi = Sr mod mi.

Step 5: Repeat Steps 3 and 4 for log M
t - 1 times.

End

The correctness of the algorithm can be found in [9], [26].
Fig. 9 depicts a network implementation of the residue

decoder for r = 3, m1 = 3, m2 = 5, m3 = 7, and t = 3. The num-
ber X (take (0, 2, 3) = 87 as an example) enters the circuit on
the left in residue codes, and exits it in binary on the right
in three iterations; the first iteration computes the least sig-
nificant three bits (= 111), the second iteration computes the
next three significant bits (= 010), and the last iteration
computes the most significant bits (= 001).

Basically, a network arithmetic unit is a CRPN(m)
modulo m subtracter cascaded with a constant modulo m

Fig. 9. Output decoding on CRPN(105); r = 3, n = 3, m1 = 3, m2 = 5, m3 = 7.

Fig 10. Network arithmetic unit to compute 2(y2 –5 r1) = 2(1 –5 3) = 1 on CRPN(5).
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multiplier. Since one input of the modulo m multiplier is a
constant, it can be implemented by a fixed set of connec-
tions as in the shift-m complementer case (Fig. 6). A net-
work arithmetic unit that is set to compute 2(y2 −5 r1) is
shown in Fig. 10.

5 PERFORMANCE ANALYSIS

Now we consider the hardware cost and delay for the
arithmetic circuits designed above. Let CADD(m) and
DADD(m) denote the cost and the delay of mod m addition
or subtraction network, respectively. Similarly, let CMUL(m)
and DMUL(m) denote the cost and the delay of mod m mul-
tiplication network, respectively. The CRPN(m) can be im-
plemented with mÈlog m˘ directional coupler switches and
Y-junctions, and with Èlog m˘ delay. For simplicity and
without loss of generality, we assume that the cost and de-
lay of both directional coupler switch and Y-junction are
the same. The shift-m complementer box used in the sub-
traction circuit is hardwired, and we assume that it does
not incur any additional cost or delay. With these observa-
tions, we conclude that the modulo m addition and sub-
traction on the CRPN(m) requires

CADD(m) = mÈlog m ˘ + mÈlog m˘ (20)

cost and

DADD(m) =2 Èlog m˘     (21)

delay.
Now we consider the case of M = m1 ¥ m2 ¥ � ¥ mr. Let

CADD(M) and DADD(M) denote the total number of optical
directional coupler switches and the delay for the modulo
M adder, respectively, excluding the residue encoder and
decoder circuits. It is easy to deduce from the above analy-
sis that CADD(M) is the sum of all subnetworks CRPN(mi).
Hence, we have

C M m mADD i i
i

r

a f =
=
Â2

1

log .

It is shown in [16] that if mi, 1 £ i £ r are the first r primes,

then m m O M O ni ii

r
log log

=Â = =
1

2 2e j e j, where n = log M.

Thus,

CADD(M) = O(log2 M)=O(n2).

The delay through the network is given by the delay
through the largest subnetwork, i.e., subnetwork CRPN(mr).
Hence,

D M mADD i

r

ia f =
=

max log
1

2 .

From [16], we know that if mi, 1 £ i £ r are the first r primes

then max (log )i
r

im O M= =1 , so that we have

DADD(M) = O(log log M)=O(log n).

These expressions also hold for the modulo M subtracter
since the shift complement circuits in the subtracter are
hardwired and do not incur any additional cost or delay.

Let CMPY(M) and DMPY(M) denote the hardware cost and
the delay of CRPN(M) modulo M multiplier, respectively,

again not including the encoder and decoder circuits. In
addition to r CRPN(mi)s, the CRPN(M) multiplier also uses
a 1-out-of-mi encoder and a 1-out-of-(mi − 1) decoder in its
ith subnetwork CRPN(mi). Each 1-out-of-(mi − 1) decoder
can be implemented with (mi − 1)Èlog (mi − 1)˘ two-input OR
gates and Èlog (mi − 1)˘ delay; each 1-out-of-mi encoder can
be implemented with mi Èlog mi˘ two-input AND gates and
Èlog mi˘ delay. For convenience and without loss of gener-
ality, we assume that a two-input logic gate have the same
delay and cost as that of optical directional coupler switch
or Y-junction. Given this assumption and the fact that all
mip and mop boxes used in the subnetworks are hardwired,
we have

C M m m m m m

m m

MPY i i i i i
i

r

i i
i

r

a f c h c he j= - - + +

£

=

=

Â

Â

5 1 1

7

1

1

log log

log .

Again, noting that m m O M O ni ii

r
log log

=Â = =
1

2 2e j e j,
we have

CMPY(M) = O(log2 M) = O(n2).

The delay through the multiplier is

D M m mMPY i

r

i ia f c he j= + - +
=

max log log
1

5 1 1

or, given that max (log )i
r

im O M= =1 ,

DMPY(M) = O(log log M) = O(log n).

Now, let CINPUT(M) and DINPUT(M) denote the cost and the
delay of input encoding network, respectively. We have

C M n mINPUT i
i

r

a f =
=
Â2

1

.      (22)

Recalling that n = Èlog M˘, and that m1 + m2 + º + mr =
O(log2 M/log log M) from [16], the cost of this network is
O(log3 M/log log M)=O(n3/log n). Its delay is

DINPUT(M) = 2n. (23)

REMARK 1. We note that this input encoder uses 1-out-of-mi
codes. This allows it to detect all unidirectional errors
concurrently [17]. If we relax this property, then a bi-
nary tree algorithm can be used to reduce the cost and
delay complexities of the input encoder to O(n2) and
O(log n), respectively [16].

Finally, let COUTPUT(M) and DOUTPUT(M) denote the cost
and the delay of the output decoding network, respectively.
Then

C M iC m r COUTPUT ADD i ADD
t

i

r

a f c h a f e j= + - +
=
Â 1 2

1

2
1 1

t m m mi
i

r

i i
i

r

= =
Â Â+

L
N
M
M

O
Q
P
P

log               (24)

where the first summand is contributed by the networks
that compute ri and yi, 1 £ i £ r, the second term is the cost
of networks that compute Si, 1 £ i £ r, and the last summand
is the cost of the binary-to-residue conversion network that
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compute zi, 1 £ i £ r. Substituting (20) for CADD(mi) and
CADD(2t),

C M i m m r tOUTPUT i i
t

i

r

a f d i a fe j= + - ¥ ¥ +
=
Â 2 1 2 2

1

log

2
1 1

t m m mi
i

r

i i
i

r

= =
Â Â+

F
HG

I
KJ

log                      (25)

Given that r = O(n/log n) and mr = O(n), the first summand
on the right is O(n3/log n). Likewise, the middle term is
O(t2tn/log n). Also, given that

m O M M O n ni
i

r

=
Â = =

1

2 2log / log log / loge j e j

and

m m O M O ni i
i

r

log log
=
Â = =

1

2 2e j e j ,

the last summand is O(tn2/log n + n2) as established in [16].
Summing these three terms together we find

COUTPUT(M) = O(n3/log n + tn2t/log n + tn2/log n + n2).  (26)

Now as for the delay through the network, we note that

inputs are circulated through the network log M
t - 1 times,

and that the delay experienced in each iteration is 2t +

max1£i£r{Èlog mi˘} + (r + 1)max1£i£r{Èlog mi˘}. Thus, the delay
through this conversion network is

D r m
M

tOUTPUT i r i= +
L
MM

O
PP

-
F
HG

I
KJ£ £

max log
log

1
1n s

2 1
1 1

t m r m
i r i i r i+ + +F

H
I
K£ £ £ £

max log max logn s a f n s     (27)

The first term is O(log M) = O(n), while the second term is

O t MM
t( ( log ))log + , and hence

D M O n
n
t t nOUTPUT a f a f= + +

F
HG

I
KJ .         (28).

Now, if we let t = log log M = log n, then we have

COUTPUT(M) = O(n3/log n)        (29)

DOUTPUT(M) = O(n2/log n).        (30)

REMARK 2. These cost and delay complexities can be re-
duced to O(n2log n) and O(log2 n) if we use an algo-
rithm based on Chinese Remainder Theorem [16].
However, an outstanding feature of the output de-
coder presented here is that, like the input encoder, it
also has the capability of detecting all unidirectional
errors concurrently [17]. Therefore, all modules de-
scribed in this paper can be combined into a system
that has the capability of detecting all unidirectional
errors concurrently.

In summary, modulo addition, subtraction, and multi-
plication exact O(n2) hardware and O(log n) delay in the
residue code domain, O(n3/log n) hardware and O(n2/log n)
delay in the binary domain. The increase of complexity in
the binary domain is due to the required conversions be-
tween binary and residue codes. Table 2 compares these
complexities with the complexities of previously published
designs.

6 CONCLUSION

In this paper, cyclic permutation networks are defined and
used to construct various arithmetic circuits. Unlike con-
ventional arithmetic units, these arithmetic circuits are
based on coding numbers into permutation maps, and then
carrying out arithmetic operations by composing permuta-
tions. The resulting permutations are then converted back
into sums and products. It has been established that in or-
der of complexity terms, optical implementations of these
arithmetic circuits are more efficient and faster than the
previously reported arithmetic architectures. Another
added advantage of these new arithmetic circuits is that
they are inherently capable of concurrent error detection
[17]. Moreover, they can be used to construct inner product
processors with O(1) computation time [18].

One potential drawback of these new arithmetic circuits
is their time overhead for converting between binary and
residue codes. This may not be as critical in signal process-
ing applications as it is in general purpose computations.
Nonetheless, in the case of general purpose computations,
much of the potential performance degradation due to con-
version time overhead can be alleviated by pipelining the
conversion steps over input encoding and output decoding
circuits.

TABLE 2
COMPLEXITY COMPARISON OF VARIOUS DESIGN FOR AN n-BIT PARALLEL ADDER

Number of Gates,
Method Light Sources, or Circuit Depth or

Detection Planes Time Complexity

SSL [5], [19] W(2
n
) O(1)

Shadow casting [19], [28] O(2
n
) O(1)

Programmable logic [19], [21] O(n2
n
) O(n)

Spatially variant method [19] O(n
3
) O(log n)

Proposed method O(n
2
) O(log n)

(Residue codes domain)

Proposed method O(n
3
/log n) O(n

2
/log n)

(Binary number domain)
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